Zeta-20 JI tuning An offshoot of Kraig Grady's Centaur and Rod Poole's 17-note tuning Primes 2-3-7-11-13 Keyboard mapping with BRILLO (Basically Regularized Interval Locations Logically Organized -- more or less) With inspiration from Fr. Scipione Stella and Fabio Colonna Note reduplication of 1/1, 9/8, 4/3, and 3/2 on both manuals F#* C* C#* D* Eb* E* F* G* A* Bb* G#* B* C*
 91/88
 9/8
 7/6
 11/9
 4/3
 11/8
 3/2
 14/9
 27/16
 7/4
 11/6
 2/1
 91/44

 58
 204
 267
 347
 498
 551
 702
 765
 906
 969
 1049
 1200
 1258
99:9128:2722:2112:1133:3212:1128:27243:22491:8822:2112:1191:8814663811515315163141588115158
 C#
 D
 Eb
 E
 F
 F#
 G
 G#
 A
 Bb
 B
 C

 13/12
 9/8
 13/11
 14/11
 4/3
 13/9
 3/2
 13/8
 22/13
 16/9
 21/11
 2/1

 139
 204
 289
 418
 498
 637
 702
 841
 911
 996
 1119
 1200
 С 1/10 13:1227:26104:9912:1122:2113:1227:2613:12176:16991:8812:1122:2113965851518113965139705815181 Chains of fifths and Zalzalian or middle thirds Dashed lines --- show pure fifths (3/2) Dotted lines ... show "virtually tempered" fifths (176/117 or 182/121) Note option of either 22/13 (A) or 27/16 (G#*) 702.0702.0706.9702.0702.0706.7706.9702.0702.03:23:2176:1173:23:2182:121176:1173:23:2 13/9 --- 13/12 --- 13/8 ... 11/9 --- 11/6 --- 11/8 ... 91/88 ... 14/9 ---- 7/6 --- 7/4 636.6 138.6 840.5 347.4 1049.4 551.3 58.0 764.9 266.9 968.8 11:9 347.4

 11:9
 39:32
 39:32
 11:9
 11:9
 11:9
 364:297
 11:9
 11:9

 347.4
 342.5
 342.5
 347.4
 347.4
 347.4
 352.2
 347.4
 347.4

176:117 | 182:121 | 3:2 706.9 706.7 702.0 22/13 ... 14/11 --- 21/11
 289.2
 996.1
 498.0
 0.0
 702.0
 203.9
 905.9

 176:117
 3:2
 3:2
 3:2
 3:2
 3:2
 3:2

 706.9
 702.0
 702.0
 702.0
 702.0
 702.0
 702.0
 There are, in this view, two chains of fifths: At 13/11-21/11, 8 fifths all within 5 cents of just (using 9/8-22/13-14/11) At 13/9-7/4, 9 fifths all within 5 cents of just in theory -- or 5.9 cents in 1024-ed2

We can also look at the system as similar to George Secor's tuning (in a tempered form) which he recalls using within his 17-note well-temperament (17-WT) in 1978, see his "The 17-note Puzzle -- And the Neo-medieval Key That Unlocks It," _Xenharmonikon_ 18 (Spring, 2006), pp. 55-80 at 71, available at http://www.anaphoria.com/Secorl7puzzle.pdf>. In a JI form, Secor's tuning is as follows:

13/12	4/3	13/8	1/1	11/9	3/2	11/6
138.6	498.0	840.5	0.0	347.4	702.0	1049.4
16	:13 3	9:32 1	6:13	11:9	27:22 1	1:9
35	9.5 3	42.5 3	59.5 3	347.4	354.5 34	7.4

Erv Wilson's Rast/Bayyati Matrix based on al-Farabi's Zalzalian thirds of 27/22 and 11/9 <http://www.anaphoria.com/RAST.PDF>, and Jacques Dudon's Mohajira tunings based on various JI or tempered ratios (e.g. 1/1-13/12-59/48-4/3-3/2, or 48:52:59:64:72, see Scala archive, dudon_mohajira_r.scl), are two other examples of this kind of technique with chains of Zalzalian thirds, a form of Dudon's entrelacs or an "interlacing" of two chains of fifths.

Margo Schulter 13 December 2013